Presented at Asiacrypt 2004

# On the Security of MOR Public Key Cryptosystem

2004. 12. 8.

In-Sok Lee, Woo-Hwan Kim, Daesung Kwon, Sangil Nahm, Nam-Seok Kwak, Yoo-Jin Baek



Information Security and Cryptology Research Center Seoul National University

#### Contents

- MOR Public Key Cryptosystem
   Related Problems
- Security Analysis
  - Generic Complexity
  - Central Commutator Attack
  - Group Extensions

#### Conclusion

On the Security of MOR Public Key Cryptosystem



# MOR Public Key Cryptosystem

#### Crypto 2001,

S. Paeng, K. Ha, J. Kim and S. Chee, "New public key cryptosystem using finite non-abelian groups"

#### MOR = more, morphism, .....?

- more security
- more speed
- easier signature scheme .....

On the Security of MOR Public Key Cryptosystem



## **Current Status of MOR**

- All the suggested groups were unsatisfactory.
  - Paeng et al., Cryptology ePrint Archive, 2001.
  - Paeng, Inf. Process. Lett., 2003.
  - □ Tobias, Proc. PKC, 2003.
- Waiting for a suggestion ;
  - "good" candidates of finite groups G,
  - security parameters ; |G|, |Z(G)|, |Inn(g)|, .....

On the Security of MOR Public Key Cryptosystem



#### **Our Objective**

#### We are not trying to suggest a new candidate.

#### We rather intend to reveal the reason why it is not easy to find a "good" candidate.

On the Security of MOR Public Key Cryptosystem



#### **Standard Notations**

 For g ∈ G, define lnn(g) ∈ Aut(G) by lnn(g)(h) = g<sup>1</sup>hg, (h ∈ G)
 Inner automorphism group ;

 $\mathsf{Inn}(G) = \{ \mathsf{Inn}(g) \mid g \in G \} \leq \mathsf{Aut}(G)$ 

Center of G;

 $Z(G) = \{ z \in G \mid gz = zg \text{ for all } g \in G \}$ 

- $Inn(G) \approx G/Z(G)$
- $\overline{g}$  = [image of g in G/Z(G)]
- |g| = [ order of g in G ]

On the Security of MOR Public Key Cryptosystem



# MOR Public Key Cryptosystem

| Setup      | G: finite non-abelian group                                                                                           |                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|            | $\{ \forall_i \mid i \in I \}$ ; generators of G                                                                      |                                                                           |
| Public Key | Inn(g) and Inn(g <sup>s</sup> )                                                                                       | { Inn( <i>g</i> )( <sub><i>¥<sub>i</sub></i>)   <i>i</i>∈<i>I</i> }</sub> |
|            |                                                                                                                       | $\{ \operatorname{Inn}(g^{s})(\forall_{i}) \mid i \in I \}$               |
| Secret Key | $oldsymbol{S}\in\mathbb{N}$                                                                                           | s (mod  Inn( <i>g</i> ) )                                                 |
| Encryption | $a \in_{R} \mathbb{N},$<br>compute $E = (\operatorname{Inn}(g^{s}))^{a}(m)$<br>and $\psi = \operatorname{Inn}(g^{a})$ | message : $m \in G$<br>ciphertext : $(E, \psi)$                           |
| Decryption | $\psi^{-s}(E) = m$                                                                                                    |                                                                           |

On the Security of MOR Public Key Cryptosystem



#### **Related Problems**

Special Conjugacy Problem(SCP) :

• Given  $\phi = \text{Inn}(g)$ , find  $g_1$  such that  $\phi = \text{Inn}(g_1)$ .

- □ That is, given  $\{\ln (g)(\forall_i) \mid i \in I\}$ , find  $g_1$  such that  $\ln (g_1)(\forall_i) = \ln (g)(\forall_i)$  for all  $i \in I$ .
- Assume SCP is easy for G.
   Otherwise, .....

On the Security of MOR Public Key Cryptosystem



#### **Related Problems**

- MOR(G) = DLP(Inn(G)): Given  $\phi = Inn(g)$  and  $\phi^s = Inn(g^s)$ , find s.
- Assuming SCP is easy for G
   □ Find g<sub>1</sub> and g<sub>2</sub> such that Inn(g<sub>1</sub>) = \$\phi\$ and Inn(g<sub>2</sub>) = \$\phi^s\$.
   □ Then, g<sub>2</sub> z = g<sub>1</sub><sup>s</sup> for some z ∈ Z(G).
- Solve DLP over G:
  For each z in Z(G), try to solve DLP(g<sub>1</sub>, g<sub>2</sub> z).

If |Z(G)| is small, MOR(G) is similar to DLP(G).
 If |Z(G)| is sufficiently large, MOR(G) might be difficult enough, even though DLP(G) is easy.....(?)

On the Security of MOR Public Key Cryptosystem



#### **Related Problems**

- (Assume SCP is easy for G.)
  - Given  $g_1$  and  $g_2$  such that  $g_2 z = g_1^s$  for some  $z \in Z(G)$ , find s,
  - i.e., given  $g_1$  and  $g_2$  such that  $\overline{g_2} = \overline{g_1}^s$ , find s.
- Note that s is determined up to  $(\text{mod} | \overline{g} |)$
- Thus, MOR(G) = DLP(Inn(G)) = DLP(G/Z(G)).





# **Generic Complexity**

#### Generic algorithm for DLP

 Algorithm which does not exploit any particular properties of representations of the group is called generic.

#### Examples ;

- Baby-step giant-step
- Pollard rho method
- Pohlig-Hellman algorithm





# **Generic Complexity**

- Group operations of G/Z(G) can be realized using group operations of G.
  - Group multiplication ;  $Mul_{G/Z}(g_1, g_2) = Mul_G(g_1, g_2)$
  - □ Inversion ;  $Inv_{G/Z}(g) = Inv_G(g)$
  - Equality test ;  $Equ_{G/Z}(g_1,g_2) = True$ , if  $g_1g_2^{-1} \aleph_i = \aleph_i g_1g_2^{-1}$  for all  $i \in I$ , False, otherwise

On the Security of MOR Public Key Cryptosystem



#### Generic Complexity ; Pohlig-Hellman

May assume ;

- |I| = the number of given generators in G=  $O(\log |G|)$
- Only need O(log |G|) equality tests in G, not |Z(G)| equality tests in G.

DLP(G/Z(G)) is O(log|G|) times more difficult than DLP(G) in a generic sense.

On the Security of MOR Public Key Cryptosystem



- $(Inn(g), Inn(g^s)) = (\phi, \phi^s)$  is given.
- Suppose we can find  $h, z \in G$  such that
  - $\Box \quad z = \phi(h^{-1})h = g^{-1}h^{-1}gh \neq 1$
  - $\phi(z^1)z = 1$  (i.e. z and g commute).
  - Then  $z^s$  can be computed from  $\phi^s$ ;  $\phi^s(h^{-1})h = g^{-s}h^{-1}g^sh = g^{-s}(h^{-1}gh)^s = g^{-s}(gz)^s = z^s$ .
- Reduction from DLP(Inn(G)) to DLP(G)
  - Compute  $(z, z^s)$  from  $(\phi, \phi^s)$ .
  - Solve DLP(G).

On the Security of MOR Public Key Cryptosystem



Assume G is nilpotent

- $G = G^0 > G^1 > \cdots > G^{k-1} > G^k = 1$ , where  $G^i = [G, G^{i-1}]$
- $G^{k-1} \subset Z(G)$  and  $G^{k-2} \not\subset Z(G)$
- Get  $h \in G^{k-2} \setminus Z(G)$
- Put  $z = g^{1}h^{1}gh \in Z(G)$
- □ "Central commutators" (z, z<sup>s</sup>)
- How to find *h*?
- $\Box z \neq 1$  is not guaranteed

On the Security of MOR Public Key Cryptosystem



Algorithm (when G is nilpotent)

| Algorithm-1 |                                                                          |  |
|-------------|--------------------------------------------------------------------------|--|
| Input       | $\phi = Inn(g), \ \phi^s$                                                |  |
| Step 1      | Put $\sigma(x) = \phi(x^1)x = g^1x^1gx$                                  |  |
|             | Choose $x_0$ such that $\sigma(x_0) \neq 1$ , i.e., $\phi(x_0) \neq x_0$ |  |
| Step 2      | Put $x_m = \sigma(x_{m-1})$                                              |  |
|             | <i>n</i> ; the smallest integer such that $x_n = 1$                      |  |
| Step 3      | Put $h=x_{n-2}$ , $z=x_{n-1}$ and compute $z^s = \phi^s(h^{-1})h$        |  |
| Output      | Get z, $z^s$ with $z \neq 1$                                             |  |

• Solving  $DLP(z, z^s)$  over G, we can find  $s \pmod{|z|}$ .

On the Security of MOR Public Key Cryptosystem



- Next, apply Pohlig-Hellman algorithm ;
  - Put  $|\phi| = m = \prod p_i^{e_i}$
  - Compute s (mod  $p_i^{e_i}$ ) for each *i*.
    - Suppose  $m = p^e$  and  $s \pmod{p^e} = \sum s_r p^r$
    - Put  $\psi = \phi^{m/p}$  and  $\psi_0 = (\phi^s)^{m/p}$
    - Applying Algorithm-1 to  $(\psi, \psi_0)$ , get  $h, z, z^{s_0}$  (|z|=p)
    - Compute s<sub>0</sub> (mod p)
    - Computing  $s_r \pmod{p}$  inductively, get  $s \pmod{p^e}$
  - □ Using CRT, completely recover s (mod m)

#### Central commutator attack is 'generic'.

On the Security of MOR Public Key Cryptosystem



- G is *'nearly'* nilpotent iff G/Z(G) has non-trivial center iff G has non-trivial upper central series
- Then, central commutator attack works. □  $\exists x \in G \setminus Z(G)$  such that  $z = x^1y^1xy \in Z(G)$  for all  $y \in G$

On the Security of MOR Public Key Cryptosystem



### Weak-Reduction

# Definition (w-reduction) *H* < *G*



#### □ s (mod $|\psi|$ ) gives partial information on s (mod $|\phi|$ ).

On the Security of MOR Public Key Cryptosystem



- If  $H \triangleleft G$  and  $G / H \approx F$ ,
  - **G** is called a group extension of H by F
- Well-known facts ;
  - □ If *G* is a group extension of *H* by *F*, there exist  $T: F \rightarrow Aut(H)$  and  $f: F \times F \rightarrow H$ such that
    - $T(\tau) \circ T(\sigma) = \operatorname{Inn}(f(\sigma, \tau)) \circ T(\sigma\tau)$
    - $f(\sigma,\tau\rho) f(\tau,\rho) = f(\sigma\tau,\rho) T(\rho)(f(\sigma,\tau))$
    - f(1,1)=1.

#### • G = [H, F, T, f]; group extension data

On the Security of MOR Public Key Cryptosystem





- Assume group extension data G = [H, F, T, f] is known.
- Theorem ;
  - □ When *F* is non-abelian,

DLP(Inn(G)) can be w-reduced to DLP(Inn(F)).

□ When  $F = \mathbb{Z}_p$ , DLP(Inn(G)) can be w-reduced to DLP(Inn(H)).

On the Security of MOR Public Key Cryptosystem



- Every finite group G has a composition series.
- May regard G as a group extended by finite simple groups for finitely many times.
- G may have many maximal normal subgroups.

On the Security of MOR Public Key Cryptosystem



- When  $F = \mathbb{Z}_p$ ,
- Case 1;  $G/Z(G) \approx H/Z(H)$ 
  - $\Box |Z(G)| > |Z(H)|$
  - The above isomorphism is computable.
  - MOR(G) is completely reduced to MOR(H).
  - E.g.,  $G = SL_2(p) X_{\Theta} \mathbb{Z}_{p}$ , (semi-direct product)
- Case 2 ; |Z(G)| ≤ |Z(H)|
   □ MOR(G) can be w-reduced to MOR(H).

On the Security of MOR Public Key Cryptosystem



# Group Extensions ; Conclusion

- To find a 'good' candidate G for MOR system, it is better to conceal the information on
  - (maximal) normal subgroups,
  - group extension data,
  - composition series,
  - lower / upper central series,
  - etc.....





#### Conclusion

- Security of MOR system
  - Based on DLP(Inn(G)) = DLP(G/Z(G))
  - In a generic sense,
    - [complexity of DLP(Inn(G))]
    - =  $O(\log |G|) \times [\text{complexity of } DLP(G)]$
- Central commutator attack
  - □ If G is nilpotent,

DLP(Inn(G)) can be completely reduced to DLP(G)

□ If **G** is 'nearly' nilpotent .....

On the Security of MOR Public Key Cryptosystem



#### Conclusion

- Group extensions
  - □ If *G* is a group extension of *H* by  $\mathbb{Z}_p$ , MOR(*G*) can be w-reduced to MOR(*H*).
- Remark : Discrete Log Problem depends not only on the algebraic structure of *G*, but on the (re)presentation of *G*.



